ЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ЗДАНИЯ ПРОТОКОЛЬНЫЙ РАСЧЕТ ПО СП 50.13330, Приложение Г

	Общая информация			
Дата заполнения Адрес здания	20.06.2011			
	ул.Свободы,173 тел.72-66-34			
Разработчик проекта	ООО Институт Удмуртгражданпроект			
Адрес и телефон разработчика	ул.Свободы,173 тел.72-66-34			
Адрес и телефон разработчика Шифр проекта	14000-9-ЭФ			
Назначение здания, серия	Поликлиника, лечебное учреждение, дом-интернат			
│	3			
Утажность, количество секции Количество квартир/офисов	100 / 50			
Расчетное количество жителей/служащих	300 / 250			
Размещение в застройке	Отдельностоящее			
Конструктивное решение	Кирпичное			

Расчетную удельную характеристику расхода тепловой энергии на отопление и вентиляцию здания, $q_{
m or}^{
m p}$, Bт/(м3·°C) следует определять по формуле:

$$q_{ ext{ot}}^{ ext{p}} = \left[k_{ ext{of}} + k_{ ext{Beht}} - \left(k_{ ext{быт}} + k_{ ext{paj}} \right) \cdot \mathbf{v} \cdot \zeta \right] \cdot (1 - \xi) \cdot \beta_h$$
 (Г. 1)

 $q_{0T}^{p} = 0.267 \text{ BT/(M3} \cdot {^{\circ}C})$

где $k_{05} = 0.179 \, \mathrm{BT/(m3 \cdot ^{\circ}C)}$ - удельная теплозащитная характеристика здания;

 $k_{\!\scriptscriptstyle
m BeHT}$ = 0.119 Bт/(м3·°C) - удельная вентиляционная характеристика здания;

 $k_{\text{быт}} = 0.056 \; \text{Вт/(м3·°C)}$ - удельная характеристика бытовых тепловыделений здания;

 $k_{\rm pag} = 0.025~{\rm BT/(m3^{\circ}C)}$ - удельная характеристика теплопоступлений в здание от солнечной радиации;

 ξ = 0.0000 - коэффициент, учитывающий снижение теплопотребления жилых зданий при наличии поквартирного учета тепловой энергии на отопление;

 $\beta_h = 1.1300$ - коэффициент, учитывающий дополнительное теплопотребление системы отопления

 ν = 0.80 - коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций;

ζ = 0.9500 - коэффициент эффективности авторегулирования подачи теплоты в системах отопления

_
Д
æ
-
Ω
즈
\geq
20
Ω
_a
Ъ
<u>u</u>
σ

Взам. инв. N	
Подп. и дата	
Инв. №	

Изм.	К.уч.	Лист	Nдок	Подпись	Дата

1	40	nn	-9.	-Эd

5. Удельную вентиляционную характеристику здания, $k_{\text{вент}}$, Вт/(м3·°С) следует определять по формуле: $k_{\text{вент}} = 0.28 \cdot c \cdot n_{\text{в}} \cdot \beta_{\nu} \cdot \rho_{\text{в}}^{\text{вент}} \left(1 - k_{3 \phi}\right) = 0.119 \text{ Bt/(м3·°C)}$

где c = 1 кДж/(кг·°C) - удельная теплоемкость воздуха;

 $\beta_{\nu} = 0.85$ - коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций;

 $ho_{B}^{\text{Вент}} = 1.32 \ \text{кг/м3}$ - средняя плотность приточного воздуха за отопительный период;

$$\rho_{\rm B}^{\rm BeHT} = 353 / \left[273 + t_{\rm OT} \right]$$
 (Г. 3)

где t_{OT} = -4.70 °C - средняя температура наружного воздуха за отопительный период;

 $n_{\rm B}=0.380~{
m 1/4}$ - средняя кратность воздухообмена здания за отопительный период;

$$n_{\rm B} = n_{\rm B1} \cdot q_1 + \dots + n_{\rm BN} \cdot q_N \stackrel{=}{}_{\rm 1/u} = 1.0.051 + 1.0.059 + 1.0.017 + 1.0.253 = 0.360$$

где $n_{{
m B}1}$ - средняя кратность воздухообмена отдельного помещения;

 q_1 - количество помещений с такими характеристиками;

Расчетная средняя кратность воздухообмена, $n_{\rm B}$ 1/ч, помещения (Обс. пом. 6. мех.вент) за отопительный период рассчитывается по суммарному воздухообмену за счет вентиляции и инфильтрации по формуле:

$$n_{\rm B} = \left[\left(I_{\rm BeHT} n_{\rm BeHT} \right) / 168 + \left(G_{\rm HH} + n_{\rm HH} + \frac{1}{2} \right) / \left(168 \rho_{\rm B}^{\rm BeHT} \right) \right] / \left(\beta_{\nu} V_{\rm OT} \right) = 0.0513 \, 1/4 \tag{\Gamma. 4}$$

где $I_{\text{вент}}$ = 456.90, м3/ч- количество приточного воздуха в здание при неорганизованном притоке либо нормируемое значение при механической вентиляции.

Пвент = 168.00, ч - число часов работы механической вентиляции в течение недели;

 $G_{\text{ин}\Phi}$ = 0.00, кг/ч - количество инфильтрующегося воздуха в здание через ограждающие конструкции;

пинф = 0.00, ч - число часов учета инфильтрации в течение недели;

 $ho_{\scriptscriptstyle B}^{\scriptscriptstyle BeHT}=$ = 1.32 кг/м3 - средняя плотность приточного воздуха за отопительный период;

 β_ν = 0.85 - коэффициент снижения объема воздуха в помещении, учитывающий наличие внутренних ограждающих конструкций;

 $V_{\rm or}$ = 10469.4 м3 - отапливаемый объем здания;

Подп. и дата Инв. N подл.

. ИНВ.

z

детский сад.enp

 Изм.
 К.уч.
 Лист
 Nдок
 Подпись
 Дата

14000-9-ЭФ

Лист

 $(\Gamma. 2)$

Расчетная средняя кратность воздухообмена, *п*_в1/ч, помещения (Обс. пом. ест.вент) за отопительный период рассчитывается по суммарному воздухообмену за счет вентиляции и инфильтрации по формуле:

$$n_{\rm B} = \left[\left(I_{\rm BeHT} n_{\rm BeHT} \right) / 168 + \left(G_{\rm MH} + n_{\rm MH} + \frac{1}{2} \right) / \left(168 \rho_{\rm B}^{\rm BeHT} \right) \right] / \left(\beta_{\nu} V_{\rm OT} \right) = 0.0594 \, 1/4 \quad (\Gamma. 4)$$

где $I_{\text{вент}}$ = 528.90, м3/ч- количество приточного воздуха в здание при неорганизованном притоке либо нормируемое значение при механической вентиляции.

Пвент = 168.00, ч - число часов работы механической вентиляции в течение недели;

 $G_{\text{ин}\Phi} = 0.00$, кг/ч - количество инфильтрующегося воздуха в здание через ограждающие конструкции;

Инф = 0.00, ч - число часов учета инфильтрации в течение недели;

 $ho_{B}^{ ext{BeHT}} =$ 1.32 кг/м3 - средняя плотность приточного воздуха за отопительный период;

 $\beta_{\nu} = 0.85$ - коэффициент снижения объема воздуха в помещении, учитывающий наличие внутренних ограждающих конструкций;

 $V_{\rm or}$ = 10469.4 м3 - отапливаемый объем здания;

Расчетная средняя кратность воздухообмена, $n_{\rm B}$ 1/ч, помещения (Дет. уч. мех..вент) 8. за отопительный период рассчитывается по суммарному воздухообмену за счет вентиляции и инфильтрации по формуле:

$$n_{\rm B} = \left[\left(I_{\rm BeHT} n_{\rm BeHT} \right) / 168 + \left(G_{\rm ИН} + n_{\rm ИН} + n_{\rm ИН} \right) / \left(168 p_{\rm B}^{\rm BeHT} \right) \right] / \left(\beta_{\nu} V_{\rm OT} \right) = 0.0170 \, 1/4$$
 (**Г. 4**)

где $I_{\text{вент}}$ = 271.50, м3/ч- количество приточного воздуха в здание при неорганизованном притоке либо нормируемое значение при механической вентиляции.

Пвент = 40.00, ч - число часов работы механической вентиляции в течение недели;

пинф = 128.00, ч - число часов учета инфильтрации в течение недели;

 $ho_{B}^{ ext{BEHT}} =$ 1.32 кг/м3 - средняя плотность приточного воздуха за отопительный период;

 β_ν = 0.85 - коэффициент снижения объема воздуха в помещении, учитывающий наличие внутренних ограждающих конструкций;

 $V_{
m or}$ = 10469.4 м3 - отапливаемый объем здания;

Изм.	К.уч.	Лист	Nдок	Подпись	Дата

Взам. инв.

через неплотности заполнений проемов определяется по формуле:

$$G_{\text{инф}} = \left(A_{\text{ок}}/R_{u,\text{ ок}}^{\text{тр}}\right) \cdot \left(\Delta p_{\text{ок}}/10\right)^{2/3} + A_{\text{дв}}/R_{u,\text{ дв}}^{\text{тр}} \cdot \left(\Delta p_{\text{дв}}/10\right)^{1/2} = 149.87,$$
кг/ч (Г. 5)

где A_{ok} - площадь окон и балконных дверей одного типа;

 $A_{\rm \! IB}$ - площадь входных наружных дверей;

- заданное (если есть) или требуемое сопротивление воздухопроницанию окон и балконных дверей;

 $R_{u,\; {
m дв}}^{{
m TP}}$ - заданное (если есть) или тресусывсь сель воздухопроницанию входных наружных дверей; - заданное (если есть) или требуемое сопротивление

$$\Delta p_{\text{oK}} = 0.28 \cdot H(\gamma_{\text{H}} - \gamma_{\text{B}}) + 0.03\gamma_{\text{H}}v^2 = 21.88 \,\text{\Pia}$$
 (7.2)

- расчетная разность давлений наружного и внутреннего воздуха для окон и балконных дверей;

$$\Delta p_{\rm JB} = 0.55 \cdot H(\gamma_{\rm H} - \gamma_{\rm B}) + 0.03 \gamma_{\rm H} v^2 = 33.31 \,\, {\rm \Pi a}$$
 (7.2)

- расчетная разность давлений наружного и внутреннего воздуха для входных наружных дверей;

H = 15.40, м - высота здания;

 $\gamma_{\rm H} = 3463/(273+t) = 14.490 \,\text{H/м3}$ - удельный вес наружного воздуха; где $t = -34.00 \, ^{\circ}\text{C}$ - расчетная температура наружного воздуха;

 $\gamma_{\rm B} = \gamma = 3463 \, / \left(273 + t\right) = 11.739 \; {\rm H/m3}$ - удельный вес внутреннего воздуха помещения;

где t = 22.0 °C - расчетная температура внутреннего воздуха помещения;

V = 4.8, м/с - максимальная из средних скоростей ветра по румбам за январь;

 $= (11.9/0.2) \cdot (21.9/10)^{2/3} + (4.6/0.2) \cdot (33.3/10)^{1/2} = 149.87 \text{ kg/y}$ $G_{\text{ин}\Phi}$

К.уч. **N**док Подпись

14000-9-ЭФ

детский сад.enp

Взам. инв. z Подп. и дата Инв. N подл.

Изм. К.уч. Лист **N**док Подпись Дата

14000-9-ЭФ

Лист

(F. 4)

через неплотности заполнений проемов определяется по формуле:

$$G_{\text{инф}} = \left(A_{\text{ок}}/R_{u,\text{ ок}}^{\text{тр}}\right) \cdot \left(\Delta p_{\text{ок}}/10\right)^{2/3} + A_{\text{дв}}/R_{u,\text{ дв}}^{\text{тр}} \cdot \left(\Delta p_{\text{дв}}/10\right)^{1/2} = 2956.60,$$
кг/ч (Г. 5)

где A_{ok} - площадь окон и балконных дверей одного типа;

 $A_{\rm \! IB}$ - площадь входных наружных дверей;

- заданное (если есть) или требуемое сопротивление воздухопроницанию окон и балконных дверей;

 $R_{u,\; {
m дв}}^{{
m TP}}$ - заданное (если есть) или тресусывсь сель воздухопроницанию входных наружных дверей; - заданное (если есть) или требуемое сопротивление

$$\Delta p_{\text{oK}} = 0.28 \cdot H(\gamma_{\text{H}} - \gamma_{\text{B}}) + 0.03\gamma_{\text{H}}v^2 = 21.88 \,\text{\Pia}$$
 (7.2)

- расчетная разность давлений наружного и внутреннего воздуха для окон и балконных дверей;

$$\Delta p_{\rm JB} = 0.55 \cdot H(\gamma_{\rm H} - \gamma_{\rm B}) + 0.03 \gamma_{\rm H} v^2 = 33.31 \,\, {\rm \Pi a}$$
 (7.2)

- расчетная разность давлений наружного и внутреннего воздуха для входных наружных дверей;

H = 15.40, м - высота здания;

 $\gamma_{\rm H} = 3463/(273+t) = 14.490 \, \text{H/м3}$ - удельный вес наружного воздуха; где $t = -34.00 \, ^{\circ}\text{C}$ - расчетная температура наружного воздуха;

 $\gamma_{\rm B} = \gamma = 3463 \, / \left(273 + t\right) = 11.739 \; {\rm H/m3}$ - удельный вес внутреннего воздуха помещения;

где t = 22.0 °C - расчетная температура внутреннего воздуха помещения:

V = 4.8, м/с - максимальная из средних скоростей ветра по румбам за январь;

 $= (91.3/0.2) \cdot (21.9/10)^{(2/3)} + (84.0/0.2) \cdot (21.9/10)^{(2/3)} + (88.6/0.2) \cdot (21.9/10)^{(2/3)} +$ $G_{\text{инф}}$ (87.0/0.2)·(21.9/10)^(2/3) = 2956.60 кг/ч

К.уч. Лист **N**док Подпись Дата

14000-9-ЭФ

Инв. N подл.

Изм.

К.уч.

Лист

Nдок

Подпись

12 Удельная теплозащитная характеристика здания, k_{oo} , Вт/(м3·°С), рассчитывается по формуле:

$$k_{\text{o}\delta} = \frac{1}{V_{\text{o}T}} \sum_{i} \left(n_{t,i} \frac{A_{\phi,i}}{R_{\text{o},i}^{\text{np}}} \right) = K_{\text{комп}} \cdot K_{\text{o}\delta \text{III}} = 0.179 \text{ BT/(M3·°C)}$$
 (Ж.1)

где $R_{\mathrm{o},i}^{\mathrm{np}}$, м $2\cdot {^{\mathrm{o}}}\mathrm{C/Br}$ - приведенное сопротивление теплопередаче і-го фрагмента теплозащитной оболочки здания;

 $A_{\Phi,i}$, м2 - площадь соответствующего фрагмента теплозащитной оболочки здания;

 $n_{t,i}$ - коэффициент учитывающий отличие внутренней или наружной температуры у конструкции от принятых в расчете ГСОП (формула 5.3);

 $V_{\rm or}$ = 10469.4 м3 - отапливаемый объем здания;

 $\begin{array}{l} k_{05} = \\ (11.60/3.28 \cdot 0.850 \cdot 1 + 17.54/2.50 \cdot 0.850 \cdot 1 + 93.84/0.93 \cdot 0.850 \cdot 1 + 14.66/0.60 \cdot 0.850 \cdot 1 + 4.75/1.00 \cdot 0.850 \cdot 1 + 15.00/2.10 \cdot 0.850 \cdot 1 + 15.00/4.30 \cdot 0.850 \cdot 1 + 15.00/8.60 \cdot 0.850 \cdot 1 + 7.50/14.20 \cdot 0.850 \cdot 1 + 93.84/0.93 \cdot 0.850 \cdot 1 + 55.83/2.50 \cdot 0.850 \cdot 1 + 1.75/0.60 \cdot 0.850 \cdot 1 + 1.75/0.60 \cdot 0.850 \cdot 1 + 42.00/1.00 \cdot 0.850 \cdot 1 + 45.00/2.10 \cdot 0.850 \cdot 1 + 45.00/4.30 \cdot 0.850 \cdot 1 + 45.00/45.00 \cdot 0.850 \cdot 1 + 75.00/14.20 \cdot 0.850 \cdot 1 + 9.25/3.28 \cdot 1.000 \cdot 1 + 11.90/0.60 \cdot 1.000 \cdot 1 + 4.62/1.00 \cdot 1.000 \cdot 1 + 1181.19/3.28 \cdot 1.000 \cdot 1 + 1036.53/4.51 \cdot 1.000 \cdot 1 + 738.00/1.40 \cdot 0.749 \cdot 1 + 91.28/0.60 \cdot 1.000 \cdot 1 + 83.97/0.60 \cdot 1.000 \cdot 1 + 88.62/0.60 \cdot 1.000 \cdot 1 + 87.03/0.60 \cdot 1.000 \cdot 1)/10469.40 = 0.179 \ \mathrm{BT/}(\mathrm{M3}^{\circ}\mathrm{C}) \end{array}$

Таблица Ж1

Nº	Наименование фрагмента (помещение : конструкция)	n	S, м2	R, м2·°С / Вт	n·A/R, Βτ/°C	%
Обс	. пом. мех.вент					
1	Обс. пом. мех.вент : Стена	0,850	11,6	3,28	3,0	0,16
2	Обс. пом. мех.вент : Стена подвала	0,850	17,5	2,50	6,0	0,32
3	Обс. пом. мех.вент : Внутр. стена между	0,850	93,8	0,93	85,8	4,58
4	Обс. пом. мех.вент : Окно В	0,850	14,7	0,60	20,8	1,11
5	Обс. пом. мех.вент : Дверь	0,850	4,8	1,00	4,0	0,22
6	Обс. пом. мех.вент : зона1	0,850	15,0	2,10	6,1	0,32
7	Обс. пом. мех.вент : зона2	0,850	15,0	4,30	3,0	0,16
8	Обс. пом. мех.вент : зона3	0,850	15,0	8,60	1,5	0,08
9	Обс. пом. мех.вент : зона4	0,850	7,5	14,20	0,4	0,02
Обс	. пом. ест.вент					
1	Обс. пом. ест.вент : Внутр. стена между	0,850	93,8	0,93	85,8	4,58
2	Обс. пом. ест.вент : стена подвала	0,850	55,8	2,50	19,0	1,01
3	Обс. пом. ест.вент : окно В	0,850	1,8	0,60	2,5	0,13
4	Обс. пом. ест.вент : окно 3	0,850	1,8	0,60	2,5	0,13
5	Обс. пом. ест.вент : двери	0,850	4,2	1,00	3,6	0,19
6	Обс. пом. ест.вент : зона1	0,850	45,0	2,10	18,2	0,97
7	Обс. пом. ест.вент : зона2	0,850	45,0	4,30	8,9	0,47
8	Обс. пом. ест.вент : зона3	0,850	45,0	45,00	0,9	0,05
9	Обс. пом. ест.вент : зона4	0,850	75,0	14,20	4,5	0,24
Дет.	уч. мехвент					
1	Дет. уч. мехвент : Стена	1,000	9,3	3,28	2,8	0,15
2	Дет. уч. мехвент : Окна 3	1,000	11,9	0,60	19,8	1,06

14000-9-ЭФ

детский сад.enp

Взам. инв.

Подп. и дата

ZHB.

3	Дет. уч. мехвент : Дверь	1,000	4,6	1,00	4,6	0,25	
Дет.	Дет. уч. ест. вент.						
1	Дет. уч. ест. вент. : Стена	1,000	1181,2	3,28	360,1	19,22	
2	Дет. уч. ест. вент. : чердачное перекр.	1,000	1036,5	4,51	229,8	12,27	
3	Дет. уч. ест. вент. : перекр. над техподп.	0,749	738,0	1,40	394,9	21,08	
4	Дет. уч. ест. вент. : окно В	1,000	91,3	0,60	152,1	8,12	
5	Дет. уч. ест. вент. : окно С	1,000	84,0	0,60	139,9	7,47	
6	Дет. уч. ест. вент. : окно Ю	1,000	88,6	0,60	147,7	7,88	
7	Дет. уч. ест. вент. : окно 3	1,000	87,0	0,60	145,1	7,74	
	Сумма:		3894,7		1873,2	100.00	

 $K_{
m o oldsymbol{6} I I I}$ - общий коэффициент теплопередачи здания, Bт/(м2·°C), определяется по формуле:

$$K_{\text{общ}} = \frac{1}{A_{\text{H}}^{\text{сум}}} \sum_{i} \left(n_{t,i} \frac{A_{\phi,i}}{R_{\text{o},i}^{\text{mp}}} \right) = 0.505 \,\text{Bt/(M2.°C)}$$
 (Ж.2)

 $K_{\text{комп}}$ - коэффициент компактности здания, 1/м, определяется по формуле:

$$K_{\text{комп}} = \frac{A_{\text{H}}^{\text{сум}}}{V_{\text{OT}}} = 0.35 \text{ 1/M}$$
 (Ж.3)

где $V_{
m or}$ = 10469.4 м3 - отапливаемый объем здания;

 $A_{\!\scriptscriptstyle
m H}^{{
m cym}}$ = 3707.0, м2 - сумма площадей по внутреннему обмеру всех наружных ограждений теплозащитной оболочки здания.

13 Удельную характеристику бытовых тепловыделений здания, $k_{
m ar 6bit}$ Вт/(м3·°С) , следует определять по формуле:

$$k_{\text{быт}} = k_{\text{быт}1} + \dots + k_{\text{быт}N} = 0.056 \text{ BT/(M3·°C)}$$

где $k_{\mathtt{быт1}} \dots k_{\mathtt{быт}N}$ - удельные характеристики бытовых тепловыделений соответствующих помещений, определяемых по формуле:

$$k_{
m Obs} = rac{q_{
m Obs} \cdot A_{
m K}}{V_{
m or} \cdot \left(t_{
m B} - t_{
m or}
ight)}$$
 (Г. 6)

где $q_{\rm быт}$ - величина бытовых тепловыделений на 1 м2;

 $A_{\!\scriptscriptstyle
m K}$ - жилая (расчетная) площадь помещения, м2;

*t*_{от} = -4.70 °C - средняя температура наружного воздуха за отопительный период;

 $t_{\!\scriptscriptstyle B}$ = 22.00 °C - расчетная температура внутреннего воздуха здания;

 $V_{
m or}$ = 10469.4 м3 - отапливаемый объем здания;

 $k_{\rm \widetilde{O}BIT} = (1 \cdot 1.00 \cdot 176.3) / (18.0 - 4.7) / 10469.4 + (1 \cdot 7.00 \cdot 2213.4) / (22.0 - 4.7) / 10469.4 = 0.056 \; {\rm Bt/(m3 \cdot ^{\circ}C)}$

Изм.	К.уч.	Лист	Идок

14000-9-ЭФ

8

14 Удельную характеристику теплопоступлений в здание от солнечной радиации, $k_{
m pag}$ Вт/(м3·°C) , следует определять по формуле:

$$k_{\text{pag}} = \frac{11.6 \cdot Q_{\text{pag}}^{\text{rog}}}{\left(V_{\text{ot}} \cdot \Gamma \text{CO}\Pi\right)} = 0.025 \text{ Bt/(M3·°C)}$$
(F. 7)

где V_{or} = 10469.4 м3 - отапливаемый объем здания;

ГСОП = 6327 °С·сут/год - градусо-сутки отопительного периода;

 $Q_{
m pag}^{
m rog}$ - теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям, определяемые по формуле:

$$Q_{\rm p\, aJ}^{\rm r\, oJ} = \tau_{1\, \rm o\, K} \tau_{2\, \rm o\, o} \Big(A_{\rm o\, K1} I_1 + A_{\rm o\, K2} I_2 + A_{\rm o\, K3} I_3 + A_{\rm o\, K4} I_4 \Big) + \tau_{1\, \varphi\, \varphi\, o} \tau_{2\, \varphi\, \varphi\, o} A_{\varphi\, o\, H} I_{\rm r\, o\, p} \quad \text{(\Gamma. 8)}$$

$$Q_{\text{рад}}^{\text{год}} = \sum_{i=1}^{n} \tau_{Fi} k_{Fi} A_{Fi} I_{i} m_{i}$$
 = 142308 МДж;

где n - количество светопрозрачных конструкций в здании;

^т гі - коэффициент, учитывающий затенение светового проема непрозрачными элементами заполнения;

 $k_{\it Fi}$ - коэффициент относительного проникания солнечной радиации светового проема;

 A_{Fi} - площадь светового проема;

- средняя за отопительный период величина солнечной радиации, согласно ориентации светового проема по сторонам света;

 m_i - количество световых проемов, обладающих одинаковыми характеристиками.

 $Q_{\rm pag}^{\rm rog}=0.60\cdot 0.63\cdot 14.66\cdot 966.00\cdot 1+0.60\cdot 0.63\cdot 1.75\cdot 966.00\cdot 1+0.60\cdot 0.63\cdot 1.75\cdot 966.00\cdot 1+0.60\cdot 0.60\cdot 11.90\cdot 9$ $77.00\cdot 1+0.60\cdot 0.60\cdot 91.28\cdot 966.00\cdot 1+0.60\cdot 0.60\cdot 83.97\cdot 703.00\cdot 1+0.60\cdot 0.60\cdot 88.62\cdot 1501.00\cdot 1+0.60\cdot 0.60\cdot 87.03\cdot 977.00\cdot 1=142308 МДж,$

Изм.	К.уч.	Лист	Идок	Подпись	Дата

ИHB.

z

Подп. и дата

H H E

. И подл.

К.уч.

Nдок

Подпись

Дата

10

Лист

14000-9-ЭФ